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• Exam duration.  The exam is scheduled to last two hours. 

• Materials allowed.  You may use books, notes, your laptop/tablet, and a calculator.  

• Disable all networks.  Please disable all network connections on all computer systems. 

You may not access the Internet or other networks during the exam. 

• No AI tools allowed.  As mentioned on the course syllabus, you may not use GPT or other 

AI tools during the exam. 

• Electronics.  Power down phones.  No headphones.  Mute your computer systems. 

• Fully justify your answers. When justifying your answers, reference your source and page 

number as well as quote the content in the source for your justification.  You could 

reference homework solutions, test solutions, etc. 

• Matlab. No question on the test requires you to write or interpret Matlab code.  If you base 

an answer on Matlab code, then please provide the code as part of the justification. 

• Put all work on the test.  All work should be performed on the quiz itself.  If more space 

is needed, then use the backs of the pages. 

• Academic integrity.  By submitting this exam, you affirm that you have not received help 

directly or indirectly on this test from another human except the proctor for the test, and 

that you did not provide help, directly or indirectly, to another student taking this exam. 

 

 

Problem Point Value Your Score Topic 

1 18  Continuous-Time System Properties 

2 18  Discrete-Time Convolution 

3 16  Continuous-Time Integrators 

4 14  Discrete-Time Filter Design 

5 16  Continuous-Time Sinusoidal Amplitude Modulation 

6 18  Discrete-Time Mystery Systems 

Total 100   

  



Problem 1. Continuous-Time System Properties.  18 points 

Each continuous-time system has input 𝑥(𝑡) and output 𝑦(𝑡), and 𝑥(𝑡) and 𝑦(𝑡) might be complex-

valued. 

Determine if each system is linear or nonlinear, and time-invariant or time-varying. 

You must either prove that the system property holds in the case of linearity or time-invariance, or 

provide a counter-example that the property does not hold.  Providing an answer without any justification 

will earn 0 points. 

Part System Name System Formula Linear? Time-

Invariant? 

(a) Finite Impulse 

Response (FIR) filter 
𝑦(𝑡) = 𝑥(𝑡) + 𝑥(𝑡 − 1) 

for − ∞ < 𝑡 < ∞ 

 

YES 

 

YES 

(b) Inverse 
𝑦(𝑡) =

1

𝑥(𝑡)
 

for − ∞ < 𝑡 < ∞ 

 

NO 

 

 

YES 

(c) Differentiator 
𝑦(𝑡) =

𝑑

𝑑𝑡
 𝑥(𝑡)  

for − ∞ < 𝑡 < ∞ 

 

YES 

 

 

YES 

Linearity. We’ll first apply the all-zero input test which is to input 𝒙(𝒕) = 𝟎 for all time 𝒕 under 

observation and if the output 𝒚(𝒕) is not zero for all time under observation, then the system is not 

linear.  Otherwise, we’ll have to apply the definitions for homogeneity and additivity.  All-zero 

input test is a special case of homogeneity 𝒂 𝒙(𝒕) → 𝒂 𝒚(𝒕) when the constant 𝒂 = 𝟎. 

Time-Invariance: If the current output value 𝒚(𝒕) depends only on current input 𝒙(𝒕) and not on 

any other input/output values, it is pointwise operation.  Pointwise operations are time-invariant. 

(a) Finite impulse response (FIR) filter:  𝑦(𝑡) = 𝑥(𝑡) + 𝑥(𝑡 − 1) for − ∞ < 𝑡 < ∞.  6 points. 

Linearity: Passes all-zero input test.  Need to check the following properties: 

• Homogeneity: Input 𝒂 𝒙(𝒕).  𝒚𝒔𝒄𝒂𝒍𝒆𝒅(𝒕) = (𝒂 𝒙(𝒕)) + (𝒂 𝒙(𝒕 − 𝟏)) = 𝒂 𝒚(𝒕).  YES. 

• Additivity: Input 𝒙𝟏(𝒕) + 𝒙𝟐(𝒕). 𝒚𝒂𝒅𝒅𝒊𝒕𝒊𝒗𝒆(𝒕) = (𝒙𝟏(𝒕) + 𝒙𝟐(𝒕)) + (𝒙𝟏(𝒕 − 𝟏) + 𝒙𝟐(𝒕 − 𝟏))  =
(𝒙𝟏(𝒕) + 𝒙𝟏(𝒕 − 𝟏)) + (𝒙𝟐(𝒕) + +𝒙𝟐(𝒕 − 𝟏)) =  𝒚𝟏(𝒕) + 𝒚𝟐(𝒕). YES. 

Time-Invariance: Input 𝒙(𝒕 − 𝒕𝟎). 𝒚𝒔𝒉𝒊𝒇𝒕𝒆𝒅(𝒕) = 𝒙(𝒕 − 𝒕𝟎) + 𝒙(𝒕 − 𝒕𝟎 − 𝟏) = 𝒚(𝒕 − 𝒕𝟎).  YES. 

(b) Inverse: 𝑦(𝑡) =
1

𝑥(𝑡)
 for − ∞ < 𝑡 < ∞. 6 points. 

Linearity: Fall all-zero input test.  When 𝒙(𝒕) = 𝟎, 𝒚(𝒕) =
𝟏

𝟎
 which is not 0. 

Time-Invariance: All pointwise operations are time-invariant.   

(c) Differentiator: 𝑦(𝑡) =
𝑑

𝑑𝑡
 𝑥(𝑡) for − ∞ < 𝑡 < ∞.  6 points. 

Linearity: Passes all-zero input test.  Need to check the following properties: 

• Homogeneity: Input 𝒂 𝒙(𝒕).  𝒚𝒔𝒄𝒂𝒍𝒆𝒅(𝒕)) =
𝒅

𝒅𝒕
 (𝒂 𝒙(𝒕)) = 𝒂 

𝒅

𝒅𝒕
 𝒙(𝒕) = 𝒂 𝒚(𝒕).  YES. 

• Additivity: Input 𝒙𝟏(𝒕) + 𝒙𝟐(𝒕). 𝒚𝒂𝒅𝒅𝒊𝒕𝒊𝒗𝒆(𝒕) =
𝒅

𝒅𝒕
 (𝒙𝟏(𝒕) + 𝒙𝟐(𝒕)) =

𝒅

𝒅𝒕
 𝒙𝟏(𝒕) +

𝒅

𝒅𝒕
𝒙𝟐(𝒕) =) =

 𝒚𝟏(𝒕) + 𝒚𝟐(𝒕). YES. 

Time-Invariance: All pointwise operations are time-invariant.  See above.  YES. 



 

Problem 2. Discrete-Time Convolution. 18 points 

Consider a discrete-time linear time-invariant (LTI) 

system with impulse response plotted on the right of 

 ℎ[𝑛] = 𝛿[𝑛] + 𝛿[𝑛 − 1] + 𝛿[𝑛 − 2] + 𝛿[𝑛 − 3] 

The output of the LTI system is the convolution of the 

impulse response ℎ[𝑛] and the input signal 𝑥[𝑛]: 

𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥[𝑛] 
 

(a) Let the input signal be 𝑥1[𝑛] = ℎ[𝑛]. 

Here, 𝑥1[𝑛] has four non-zero values. 

 

 

 

 

 

 

 

i. Give a formula for 𝑦[𝑛].  3 points. 

ii. Plot 𝑦[𝑛].  3 points. 

 

(b) Let the input signal be 𝑥2[𝑛] = 𝑢[𝑛] which 

is the unit step function. 

 

 

 

 

 

 

i. Give a formula for 𝑦[𝑛].  3 points. 

ii. Plot 𝑦[𝑛].  3 points. 

 

(c) Let the input signal be 

𝑥3[𝑛] = cos(𝜔̂0 𝑛) for −∞ < 𝑛 < ∞. 

Give all possible values for 𝜔̂0 for 

which 𝑦[𝑛] = 0 for −∞ < 𝑛 < ∞.  6 points. 

Easier to work in the frequency domain. 

𝒉[𝒏] is the impulse response of a four-point 

averaging filter.  See the handout Designing 

Averaging Filters. 

𝑥2[𝑛] 

𝑥1[𝑛] 

Note: This is an impulse response of 

a four-point averaging filter. 

𝒚[𝒏] = 𝜹[𝒏] + 𝟐 𝜹[𝒏 − 𝟏] + 𝟑 𝜹[𝒏 − 𝟐] + 𝟒 𝜹[𝒏 − 𝟑]
+ 𝟑 𝜹[𝒏 − 𝟒] + 𝟐 𝜹[𝒏 − 𝟓] + 𝜹[𝒏 − 𝟔] 

𝒚[𝒏] = 𝜹[𝒏] + 𝟐 𝜹[𝒏 − 𝟏] + 𝟑 𝜹[𝒏 − 𝟐] + 𝟒 𝒖[𝒏 − 𝟑] 

𝑯(𝒛) = ∑ 𝒉[𝒏] 𝒛−𝒏  =

∞

𝒏=−∞

∑ 𝒉[𝒏] 𝒛−𝒏

𝟑

𝒎=𝟎

 

𝑯(𝒛) = 𝟏 + 𝒛−𝟏 + 𝒛−𝟐 + 𝒛−𝟑   for  𝒛 ≠ 𝟎 

𝑯(𝒛) has zeros on unit circle at discrete-time 

frequencies (angles) of  𝝎̂𝟎 ∈ { 
𝝅

𝟐
, 𝝅,

𝟑

𝟐
𝝅 }. 

These frequencies are zeroed out by the filter. 

Since the discrete-time frequency domain is 
periodic with periodicity 𝟐 𝝅, the complete of 

values for 𝝎̂𝟎 ∈ { 
𝝅

𝟐
, 𝝅,

𝟑

𝟐
𝝅 } + 𝟐𝝅𝒌 for integer 𝒌. 

 

 

https://users.ece.utexas.edu/~bevans/courses/signals/handouts/Appendix%20V%20Design%20Averaging%20Filters.pdf
https://users.ece.utexas.edu/~bevans/courses/signals/handouts/Appendix%20V%20Design%20Averaging%20Filters.pdf


Solutions for using Matlab 

 
% Part (a) 

h = [1 1 1 1]; 

x1 = [1 1 1 1]; 

y = conv(h, x1); 

n = 0 : 6; 

stem(n, y, 'LineWidth', 2); 

xlim( [-0.2 6.2] ); 

ylim( [-0.2 4.2] ); 

 
% y = [ 1 2 3 4 3 2 1 ] 

 

 

 
% Part (b) 

% conv convolves two finite 

% length sequences 

% using filter is better here 

h = [1 1 1 1]; 

N = 10; 

x2 = ones(1, N); 

y = filter(h, 1, x2); 

n = 0 : N-1; 

stem(n, y, 'LineWidth', 2); 

xlim( [-0.2 N-1+0.2] ); 

ylim( [-0.2 4.2] ); 

 
% y = [ 1 2 3 4 4 4 4 … ] 

 

 

% Part (c) 

% Plot the frequency response 

% of the FIR filter h[n] 

h = [1 1 1 1]; 

freqz(h); 

 

% Magnitude response is zero at 

% frequencies pi/2, pi, -pi/2. 

% Due to periodicity of 2pi in 

% DT freq. domain, -pi/2 = 3pi/2 

 

 

(c) Alternate solution in the time-domain  

𝒚[𝒏] = ∑ 𝒉[𝒎] 𝒙𝟑[𝒏 − 𝒎] =

∞

𝒎=−∞

∑ 𝒉[𝒎] 𝒙𝟑[𝒏 − 𝒎]

𝟑

𝒎=𝟎

 

𝒚[𝒏] = 𝒙𝟑[𝒏] + 𝒙𝟑[𝒏 − 𝟏] + 𝒙𝟑[𝒏 − 𝟐] + 𝒙𝟑[𝒏 − 𝟑] 

𝒙𝟑[𝒏] = 𝐜𝐨𝐬(𝝎̂𝟎 𝒏) 

  

We need to find 𝝎̂𝟎 so that any four 

consecutive samples of 𝒙𝟑[𝒏] add to 0: 

1, -1, 1, -1, …  for 𝝎̂𝟎 = 𝝅 

1, 0, -1, 0, … for 𝝎̂𝟎 =
𝟏

𝟐
𝝅 or 𝝎̂𝟎 = −

𝟏

𝟐
𝝅 



Problem 3. Continuous-Time Integrator.  16 points 

The integrator is a building block in continuous-time systems. 

Denote the input signal as 𝑥(𝑡) and the output signal as 𝑦(𝑡). 

(a) When observing the continuous-time integrator for −∞ < 𝑡 < ∞, 

𝑦(𝑡) = ∫ 𝑥(𝜏) 𝑑𝜏
𝑡

−∞

 

The system is linear and time-invariant (LTI). 

i. Give a formula for the impulse response. 3 points. 

Let 𝒙(𝒕) = 𝜹(𝒕).  𝒚(𝒕) = ∫ 𝜹(𝝉) 𝒅𝝉 =
𝒕

−∞
𝒖(𝒕) where 𝒖(𝒕) = [

𝟏 𝐟𝐨𝐫 𝒕 > 𝟎
? 𝐟𝐨𝐫 𝒕 = 𝟎
𝟎 𝐟𝐨𝐫 𝒕 < 𝟎

 

ii. Give a formula for the step response.  3 points 

Let 𝒙(𝒕) = 𝒖(𝒕).  So, 𝒚(𝒕) = 𝒉(𝒕) ∗ 𝒙(𝒕) = 𝒖(𝒕) ∗ 𝒖(𝒕) = 𝒕 𝒖(𝒕) 

𝒖(𝒕) ∗ 𝒖(𝒕) = ∫ 𝒖(𝝉) 𝒖(𝒕 − 𝝉) 𝒅𝝉 = ∫ 𝒅𝝉 = 𝒕  𝐟𝐨𝐫 𝒕 > 𝟎
𝒕

𝟎

∞

−∞

 

due to 𝒖(𝝉) = 𝟏 𝐟𝐨𝐫 𝝉 > 𝟎, 𝒖(𝒕 − 𝝉) = 𝟏 𝐟𝐨𝐫 𝒕 > 𝝉 and 𝒖(𝝉) 𝒖(𝒕 − 𝝉) = 𝟏 for 𝟎 < 𝝉 < 𝒕 

iii. Give a formula for the frequency response.  3 points 

𝑯(𝒋 𝝎) = ∫ 𝒉(𝒕) 𝒆−𝒋 𝝎 𝒅𝒕 =
∞

−∞

∫ 𝒖(𝒕) 𝒆−𝒋 𝝎 𝒕 𝒅𝒕 =
∞

−∞

∫  𝒆−𝒋 𝝎 𝒕 𝒅𝒕
∞

𝟎

=
 𝒆−𝒋 𝝎 𝒕

−𝒋 𝝎
]

𝟎

∞

 

𝑯(𝒋 𝝎) = (𝐥𝐢𝐦𝒕→∞

 𝒆−𝒋 𝝎 𝒕

−𝒋 𝝎
) +

𝟏

𝒋 𝝎
= 𝝅 𝜹(𝝎) +

𝟏

𝒋 𝝎
 

As 𝒕 → ∞, the expression  𝒆−𝒋 𝝎 𝒕 oscillates.  We’ll look up the answer in a table. 

iv. Excluding the response to zero frequency, would you describe the frequency response as 

lowpass, highpass, bandpass, bandstop, or allpass?  Why?  3 points 

Lowpass. Excluding 𝝎 = 𝟎, magnitude response 1/|| decays with increasing frequency. 

(b) When observing the continuous-time integrator for 𝑡 ≥ 0,  

𝑦(𝑡) = 𝐶0 + ∫ 𝑥(𝜏) 𝑑𝜏
𝑡

0

 

where 𝐶0 is a real-valued constant.  

i. What is the initial condition(s)?  2 points. 

𝒚(𝒕) = 𝑪𝟎 + ∫ 𝒙(𝝉) 𝒅𝝉 = 𝑪𝟎

𝟎

𝟎

 

ii. What value(s) should the initial condition(s) have as a necessary condition for LTI properties 

to hold?  2 points. 

𝑪𝟎 = 𝟎 



Problem 4. Discrete-Time Filter Design.  14 points. 

This problem asks you to design a discrete-time linear time-invariant (LTI) invariant filter to remove 

specific frequencies from a signal. 

Harmonics can occur due to nonlinear distortion in a system.  Design a discrete-time finite impulse 

response (FIR) filter to remove harmonics of continuous-time frequency, 𝑓0.  Harmonic frequencies of 

𝑓0 are 𝑓0, 2𝑓0, 3𝑓0, … and −𝑓0, −2𝑓0, −3𝑓0, … 

(a) For sampling rate 𝑓𝑠, how many harmonics in positive frequencies, N, would be captured by 

sampling?  5 points. 

From the Sampling Theorem, 𝒇𝒔 > 𝟐 𝒇𝒎𝒂𝒙 . 

With 𝒇𝒎𝒂𝒙 = 𝑵 𝒇𝟎, 𝒇𝒔 > 𝟐 (𝑵 𝒇𝟎) and hence 𝑵 <  
𝒇𝒔

𝟐 𝒇𝟎
 . 

Since 𝑵 is an integer, 𝑵 = 𝐟𝐥𝐨𝐨𝐫 (
𝒇𝒔

𝟐 𝒇𝟎
) 

(b) Give formulas for the zeros of the LTI transfer function in the z-domain.  5 points. 

A zero will be placed on the unit circle (radius 1) at angle equal to the discrete-time frequency 

𝝎̂𝒌 being eliminated and its negated value where 

𝝎̂𝒌 = 𝟐𝝅
𝒇𝒐

𝒇𝒔
 𝒌 

and the zero locations would be at 

𝒛 = 𝒆𝒋  𝝎̂𝒌 𝐚𝐧𝐝 𝒛 = 𝒆−𝒋  𝝎̂𝒌  

for 𝒌 = 𝟏, 𝟐, … , 𝑵.  So, there are 𝟐𝑵 zeros. 

(c) Give the discrete-time input-output relationship for the FIR filter assuming the input signal is 𝑥[𝑛] 
and the output signal is 𝑦[𝑛].  4 points 

For each pair of zeros, we have a second-order FIR nulling filter to remove frequency 𝝎̂𝒌: 

𝑯(𝒛) = (𝟏 − 𝒆𝒋  𝝎̂𝒌 𝒛−𝟏)(𝟏 − 𝒆−𝒋  𝝎̂𝒌  𝒛−𝟏) = 𝟏 − (𝟐 𝐜𝐨𝐬 𝝎̂𝒌) 𝒛−𝟏 + 𝒛−𝟐 

which has the input-output relationship 

𝒚[𝒏] = 𝒙[𝒏] − (𝟐 𝐜𝐨𝐬 𝝎̂𝒌) 𝒙[𝒏 − 𝟏] + 𝒙[𝒏 − 𝟐] 

We would cascade 𝑵 second-order FIR nulling filters. 

 

In the special case that 𝒇𝒔 = 𝟐 𝑵 𝒇𝟎, the angles of the 𝟐𝑵 zeros are  

𝝎̂𝒌 = 𝟐𝝅
𝒇𝒐

𝟐 𝑵 𝒇𝟎
 𝒌 =

𝝅

𝑵
𝒌  𝒇𝒐𝒓 𝒌 = 𝟏, 𝟐, … , 𝟐 𝑵 

Which means the 𝟐𝑵 zeros are uniformly spaced around the unit circle starting at 𝒛 = 𝟏. 

This corresponds to 𝟐𝑵 roots of unity.  This is known an FIR comb filter. 

The input-output relationship is 

𝒚[𝒏] = 𝒙[𝒏] − 𝒙[𝒏 − 𝟐𝑵] 

  

https://en.wikipedia.org/wiki/Comb_filter


Problem 5.  Continuous-Time Sinusoidal Amplitude Modulation.  16 points.   

Continuous-time sinusoidal amplitude modulation multiplies the input signal 𝑥(𝑡) by a sinusoidal 

signal of fixed frequency 𝜔𝑐 in rad/s to give the output signal 𝑦(𝑡) where 

𝑦(𝑡) = 𝑥(𝑡) cos(𝜔𝑐 𝑡) 

By taking the Fourier transform of both sides, we obtain the Modulation Property: 

𝑌(𝑗 𝜔) =
1

2
 𝑋(𝑗 (𝜔 + 𝜔𝑐)) +

1

2
 𝑋(𝑗 (𝜔 − 𝜔𝑐)) 

The term 
1

2
 𝑋(𝑗 (𝜔 + 𝜔𝑐)) shifts the frequency content of 𝑋(𝑗 𝜔) left in frequency by 𝜔𝑐 and scales the 

amplitude by ½ and the term 
1

2
 𝑋(𝑗 (𝜔 − 𝜔𝑐)) shifts the frequency content of 𝑋(𝑗 𝜔) right in frequency 

by 𝜔𝑐 and scales the amplitude by ½.  Here’s an example using an ideal lowpass spectrum for 𝑋(𝑗 𝜔): 

 

 

 

 

 

 

Note 𝜔𝑐 > 𝜔1.  Please use the above Fourier transforms for 𝑥(𝑡) and 𝑦(𝑡) throughout this problem. 

We can extend this idea to add a second 

stage of sinusoidal amplitude modulation 

(in the dashed box) to increase the carrier 

frequency 𝜔𝑐 to an even higher carrier 

frequency as shown on the right: 

To achieve the frequency 

content of 𝑟(𝑡) shown on 

the right, complete the following: 

 

 

(a) Draw the frequency 

response of 𝑞(𝑡).  4 points 

 

(b) What is the value of 𝜔ℎ 

in terms of the other 

parameters in the system? 

4 points. 

 

 

(c) Draw the frequency response 

of the bandpass filter 𝐻(𝑗 𝜔).  

4 points. 

 

(d) What is the value of 𝐴? 

4 points. 

This approach, which uses two stages for sinusoidal amplitude modulation, is called heterodyning.  

For example, the first stage could be in analog circuits and the second stage in RF circuits.  The 

first stage, once implemented, can be reused in many designs. 

𝑨 =
𝟏

𝟐
 

𝝎𝒉 ∈ { 𝟗 𝝎𝒄 , 𝟏𝟏 𝝎𝒄 , − 𝟗 𝝎𝒄 , − 𝟏𝟏 𝝎𝒄 ,} 



Problem 6. Discrete-Time Mystery Systems. 18 points. 

 

Consider a discrete-time chirp signal 𝑥[𝑛] obtained by 

sampling a chirp signal that sweeps from 0 to 500 Hz. 

𝑥(𝑡) = cos(2𝜋𝑓1𝑡 + 2𝜋𝜇𝑡2) 

Where 𝑓1 = 0,   𝑓2 = 500 Hz,   𝜇 =
𝑓2−𝑓1

2𝑡max
=

500 Hz

10s
,  

and 𝑓𝑠 = 1000 Hz  

 

Assuming 𝑥[𝑛] is the input (original signal shown), 

indicate which of the systems (1-8) would produce each 

output (a), (b) and (c).  Justify your answer. 

Here, ↓2 means downsampling by a factor of two and ↑2 means upsampling by a factor of two. 

↓2 {𝑥[𝑛]} = 𝑥[2𝑛] ↑2 {𝑥[𝑛]} = {
 𝑥[𝑚]|

𝑚=
𝑛
2

𝑛 even

0 𝑛 odd
= (

1

2
+

1

2
cos(𝜋𝑛)) 𝑥[𝑚]|

𝑚=
𝑛
2

 

Hint: Draw the spectrograms corresponding to ↓2 {𝑥[𝑛]} and ↑2 {𝑥[𝑛]}.  

 

   

  

(1) 
 

(2) 
 

(3) 
 

(4) 
 

(5) 
 

(6) 
 

(7) 
 

(8) 
 

 

  

(a) Exact match to system (6). 

Partial match to system (8). 

 

(b) Exact match to system (5). 

Partial match to system (7). 

 

(c) Exact match to system (3) 

 



  

  

  

  
 
 

  



%% MATLAB code to generate spectrograms for problem 6 

%% by Mr. Dan Jacobellis, UT Austin 

blockSize = 256; overlap = 255; 

fs = 1000; Ts = 1 / fs; 

tmax = 5; t = 0 : Ts : tmax; 

%% Input chirp signal 

f1 = 0; f2 = fs/2; 

mu = (f2 - f1) / (2*tmax); 

x = cos(2*pi*f1*t + 2*pi*mu*(t.^2)); 

figure; spectrogram(x, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap gray; colormap(flipud(colormap)); clim([-25,-15]) 

title('Original signal') 

 

%% apply systems 

N = 600; win = gausswin(N+1, 2.5); 

lowpass_coeff = firhalfband(N, win, 'low'); 

highpass_coeff = firhalfband(N, win, 'high'); 

bandpass_coeff = fir1(N, [1/4,3/4], win, 'bandpass'); 

bandstop_coeff = fir1(N, [1/4,3/4], win, 'stop'); 

up2 = @(x) upsample(x,2); 

down2 = @(x) downsample(x,2); 

lowpass = @(x) conv(x,lowpass_coeff,'same'); 

highpass = @(x) conv(x,highpass_coeff,'same'); 

bandpass = @(x) conv(x,bandpass_coeff,'same'); 

bandstop = @(x) conv(x,bandstop_coeff,'same'); 

s1 = down2(lowpass(up2(x))); 

figure; spectrogram(s1, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap gray; colormap(flipud(colormap)); clim([-25,-15]); title('(system 1)') 

s2 = down2(highpass(up2(x))); 

figure; spectrogram(s2, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap gray; colormap(flipud(colormap)); clim([-25,-15]); title('(system 2)') 

s3 = down2(bandpass(up2(x))); 

figure; spectrogram(s3, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap gray; colormap(flipud(colormap)); clim([-25,-15]); title('(system 3)') 

s4 = down2(bandstop(up2(x))); 

figure; spectrogram(s4, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap gray; colormap(flipud(colormap)); clim([-25,-15]); title('(system 4)') 

s5 = up2(lowpass(down2(x))); 

figure; spectrogram(s5, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap gray; colormap(flipud(colormap)); clim([-25,-15]); title('(system 5)') 

s6 = up2(highpass(down2(x))); 

figure; spectrogram(s6, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap gray; colormap(flipud(colormap)); clim([-25,-15]); title('(system 6)') 

s7 = up2(bandpass(down2(x))); 

figure; spectrogram(s7, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap gray; colormap(flipud(colormap)); clim([-25,-15]); title('(system 7)') 

s8 = up2(bandstop(down2(x))); 

figure; spectrogram(s8, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap gray; colormap(flipud(colormap)); clim([-25,-15]); title('(system 8)') 

 


