The University of Texas at Austin
Dept. of Electrical and Computer Engineering
Final Exam Selutions 1.0

Date: December 12, 2025 Course: ECE 313 Evans

Name: Solutions

Last, First

Exam duration. The exam is scheduled to last two hours.

Materials allowed. You may use books, notes, your laptop/tablet, and a calculator.
Disable all networks. Please disable all network connections on all computer systems.
You may not access the Internet or other networks during the exam.

No Al tools allowed. As mentioned on the course syllabus, you may not use GPT or other
Al tools during the exam.

Electronics. Power down phones. No headphones. Mute your computer systems.

Fully justify your answers. When justifying your answers, reference your source and page
number as well as quote the content in the source for your justification. You could
reference homework solutions, test solutions, etc.

Matlab. No question on the test requires you to write or interpret Matlab code. If you base
an answer on Matlab code, then please provide the code as part of the justification.

Put all work on the test. All work should be performed on the quiz itself. If more space
is needed, then use the backs of the pages.

Academic integrity. By submitting this exam, you affirm that you have not received help
directly or indirectly on this test from another human except the proctor for the test, and
that you did not provide help, directly or indirectly, to another student taking this exam.

Problem | Point Value | Your Score Topic
1 18 Continuous-Time System Properties
2 18 Discrete-Time Convolution
3 16 Continuous-Time Integrators
4 14 Discrete-Time Filter Design
5 16 Continuous-Time Sinusoidal Amplitude Modulation
6 18 Discrete-Time Mystery Systems

Total 100




Problem 1. Continuous-Time System Properties. /8 points

Each continuous-time system has input x(t) and output y(t), and x(t) and y(t) might be complex-
valued.

Determine if each system is linear or nonlinear, and time-invariant or time-varying.

You must either prove that the system property holds in the case of linearity or time-invariance, or
provide a counter-example that the property does not hold. Providing an answer without any justification
will earn 0 points.

Part System Name System Formula Linear? Time-
Invariant?

(@) Finite Impulse y() =x() +x(t—1)

Response (FIR) filter for — 00 < t < o YES YES
(b) Inverse _

y(®) = X NO YES
for—oo <t <o

(©) Differentiator

d
y(t) = T x(t) YES YES
for—oo<t< o

Linearity. We’ll first apply the all-zero input test which is to input x(t) = 0 for all time ¢ under
observation and if the output y(t) is not zero for all time under observation, then the system is not
linear. Otherwise, we’ll have to apply the definitions for homogeneity and additivity. All-zero
input test is a special case of homogeneity a x(t) — a y(t) when the constant a = 0.

Time-Invariance: If the current output value y(t) depends only on current input x(t) and not on
any other input/output values, it is pointwise operation. Pointwise operations are time-invariant.
(a) Finite impulse response (FIR) filter: y(t) = x(t) + x(t — 1) for — 0 < t < . 6 points.
Linearity: Passes all-zero input test. Need to check the following properties:

e Homogeneity: Input a x(t). Vscarea(t) = (ax(t)) + (ax(t—1)) = ay(t). YES.

e Additivity: Input x1(t) + x2(%). Yaaditive(®) = (x1(1) + x2(8)) + (x1(t — 1) + x,(t — 1)) =

(x1(8) + x1(t — 1)) + (x2(0) + +x2(t — 1)) = y41(t) + y2(t). YES.

Time-Invariance: Input x(t — to). Ysnifrea(t) = x(t —to) + x(t —ty — 1) = y(t — to). YES.

(b) Inverse: y(t) = % for — 00 < t < o0. 6 points.

Linearity: Fall all-zero input test. When x(t) = 0,y(t) = %which is not 0.

Time-Invariance: All pointwise operations are time-invariant.
(c) Differentiator: y(t) = % x(t) for — oo < t < 00. 6 points.
Linearity: Passes all-zero input test. Need to check the following properties:
e  Homogeneity: Input a x(t). Vscaiea(t)) = % (ax(®) =a % x(t) = ay(t). YES.
o Additivity: Input x; (£) + %2(8). Yadaieiwe(€) = 5 (£1(8) + %(8)) = = 21(6) + T2x,(8) =) =

yl(t) + ) (t). YES.
Time-Invariance: All pointwise operations are time-invariant. See above. YES.



Problem 2. Discrete-Time Convolution. /8 points h[n]
Consider a discrete-time linear time-invariant (LTI) 1-@
system with impulse response plotted on the right of T T T

n
h[n] = 6[n] + 6[n— 1] + §[n — 2] + 6[n — 3] —0—0-@ o000

3 -2 - 1 2
The output of the LTI system is the convolution of the 3241 3456
impulse response h[n] and the input signal x[n]: Note: This is an impulse response of
y[n] = hln] * x[n] a four-point averaging filter.

(a) Let the input signal be x,[n] = h[n].

Here, x,[n] has four non-zero values.

BRI [ .

-3 -2-1 1 2 3 4 56 3 -2 -1

PN WA
®
®

1. Give a formula for y[n]. 3 points. yln] =8[n]+26[n—1]+3 6[n—2] +48[n-3]

ii. Plot y[n]. 3 points. +38[n—4]+28[n—5]+6[n-6]

(b) Let the input signal be x,[n] = u[n] which

is the unit step function. 4 ver
3 Q
2
TT [T 9]

n

—9 0@

-321 123456 3-2-1| 1234567

i lee a formula for y[n]. 3 points. yn] =6[n]+2d6n—1]+36[n—2]+4u[n-— 3]

ii. Plot y[n]. 3 points.

(c) Let the input signal be o 3
— -n __ -n
x3[n] = cos(@, n) for —oo < n < oo, H(z) = Z hin]z™ = Z h[n] z

n=-—oo
Give all possible values for @, for Hiz) =1+z 1422423 forz 0

which y[n] = 0 for —o0 < n < 0. 6 points. o ) ]
H(z) has zeros on unit circle at discrete-time

Easier to work in the frequency domain. ) R o 3

frequencies (angles) of @, € {E’ T }.

h[n] is the impulse response of a four-point

averaging filter. See the handout Designing
Averaging Filters. Since the discrete-time frequency domain is

periodic with periodicity 2 m, the complete of

values for @, € { ,TT, 211 } + 2mk for integer k.

These frequencies are zeroed out by the filter.



https://users.ece.utexas.edu/~bevans/courses/signals/handouts/Appendix%20V%20Design%20Averaging%20Filters.pdf
https://users.ece.utexas.edu/~bevans/courses/signals/handouts/Appendix%20V%20Design%20Averaging%20Filters.pdf

Solutions for using Matlab

% Part (a) at
h=1[1111]; .,
x1 = [1111]; '
y = conv(h, x1); 3r
n =20 6/ 25
stem(n, y, 'LineWidth', 2);

xlim( [-0. 6.2] ); 2r
ylim( [-0.2 4.2] );

$y=1[11234321]

% Part (b) } } . . ‘ ‘ ‘
% conv convolves two finite 4 g §
% length sequences ash
% using filter is better here
h=1[1111]; af
N = 10; 25}
x2 = ones(1l, N);
y = filter(h, 1, x2); 2}
n=0: N-1;
stem(n, y, 'LineWidth', 2); "
xlim( [- N—1+O.2] ) 1
ylim( [- 4.21 )
0.5
Sy=1123441414.] o ‘
0 1 2 3 4 ] B 7 8 9
$ Part (c) 20
% Plot the frequency response 10F —
% of the FIR filter h[n] g ol . I
h=1[1111]; g . AN -
freqz (h); = ‘ s
g’-zn \ ".f
% Magnitude response is zero at -0 r | t
% frequencies pi/2, pi, -pi/2. 4% &1 &2 Qa &4 &5 &6 i? &s de 1
% Due to periodicity of 2pi in Normalized Frequency (xr rad/sample)
% DT freq. domain, -pi/2 = 3pi/2
(c) Alternate solution in the time-domain We need to find @, so that any four

consecutive samples of x3[n] add to 0:
Z h[m] x3[n —m] Z hlm]x3[n—m] 1, .1,1,-1,... for@,=m

m=—o

1,0,-1,0, ... for @y = Iror Dy = ~1n
y[n] = x3[n] + x3[n — 1] + x3[n — 2] + x3[n — 3] 2 2

x3[n] = cos(@y n)



Problem 3. Continuous-Time Integrator. 16 points

The integrator is a building block in continuous-time systems.

Denote the input signal as x(t) and the output signal as y(t).

(a) When observing the continuous-time integrator for —oo < t < oo,

t
y(t) =j x(7) dt

The system is linear and time-invariant (LTI).

L.

1i.

1il.

1v.

Give a formula for the impulse response. 3 points.

: 1 fort>0
Let x(t) = 8(t). y(t) = [__ 8(7) dT =u(t) where u(t) = |? fort=0
0 fort<oO

Give a formula for the step response. 3 points
Let x(t) = u(t). So, y(t) = h(t) * x(t) = u(t) *u(t) = t u(t)

u(t)*u(t)=Jmu(t)u(t—r)dr=ftdr=t fort>0
—co 0

duetou(r) =1fort>0,u(t—7)=1fort>tandu(r)u(t—7) =1for0<t<'t

Give a formula for the frequency response. 3 points

e jot o

H(iw)zf h(t)e‘j“’dtzj u(t)e-iwtdt=f edotgr ="
—00 —o0 0 -] w 0

] ] e ot 1 1
Hjw)= (llmHOo _jw>+j—w—7t8(w)+j—w

As t - oo, the expression e/ ® ¢ oscillates. We’ll look up the answer in a table.

Excluding the response to zero frequency, would you describe the frequency response as
lowpass, highpass, bandpass, bandstop, or allpass? Why? 3 points

Lowpass. Excluding @ = 0, magnitude response 1/|®| decays with increasing frequency.

(b) When observing the continuous-time integrator for t > 0,

t

y(t) = C, +f x(1) dt

0

where C, is a real-valued constant.

.

1.

What is the initial condition(s)? 2 points.
0

y(t) = CO +f X(T) dt = CO
0

What value(s) should the initial condition(s) have as a necessary condition for LTI properties
to hold? 2 points.

CO=O



Problem 4. Discrete-Time Filter Design. 14 points.

This problem asks you to design a discrete-time linear time-invariant (LTI) invariant filter to remove
specific frequencies from a signal.

Harmonics can occur due to nonlinear distortion in a system. Design a discrete-time finite impulse
response (FIR) filter to remove harmonics of continuous-time frequency, f,. Harmonic frequencies of

fo are fo, Zfo, 3f0, e and _fo, _Zfo,_?)fo, e

(a) For sampling rate f;, how many harmonics in positive frequencies, N, would be captured by
sampling? 5 points.
From the Sampling Theorem, f; > 2 f,.4x -

With fax =N fo, fs > 2 (N fo) and hence N < zf; .
0

Since N is an integer, N = floor (fos )
0

(b) Give formulas for the zeros of the LTI transfer function in the z-domain. 5 points.

A zero will be placed on the unit circle (radius 1) at angle equal to the discrete-time frequency
@y, being eliminated and its negated value where

&\)k =2t— k
S
and the zero locations would be at

z=¢e ®andz=e7 ®
fork=1,2,..,N. So, there are 2N zeros.
(c) Give the discrete-time input-output relationship for the FIR filter assuming the input signal is x[n]
and the output signal is y[n]. 4 points
For each pair of zeros, we have a second-order FIR nulling filter to remove frequency @,:
Hz)=(1-e @z (1-eT®z1)=1—-(2 cos@y) z 1 +272
which has the input-output relationship
y[n] = x[n] — (2 cos @) x[n — 1] + x[n — 2]
We would cascade N second-order FIR nulling filters.

In the special case that f; = 2 N f, the angles of the 2N zeros are

fo
2N fo

Which means the 2N zeros are uniformly spaced around the unit circle starting at z = 1.

T
), =2m kzﬁk fork=1,2,..,2N

This corresponds to 2N roots of unity. This is known an FIR comb filter.

The input-output relationship is
y[n] = x[n] — x[n - 2N]


https://en.wikipedia.org/wiki/Comb_filter

Problem 5. Continuous-Time Sinusoidal Amplitude Modulation. 16 points.

Continuous-time sinusoidal amplitude modulation multiplies the input signal x(t) by a sinusoidal
signal of fixed frequency w, in rad/s to give the output signal y(t) where

x(t) y(t)
y(t) = x(t) cos(w, t)
By taking the Fourier transform of both sides, we obtain the Modulation Property:
1 1
Y(w)= > X(G(w+w))+ 5 X (w—w)) cos(wct)

The term % X(j (w + w,)) shifts the frequency content of X (j w) left in frequency by w, and scales the

amplitude by 'z and the term% X( (w — w,)) shifts the frequency content of X (j w) right in frequency
by w, and scales the amplitude by '%2. Here’s an example using an ideal lowpass spectrum for X (j w):

X(jw) Y(jw)
2 T 1
w } I w
-, 0 , ~@, - W » -0, W 0 @, - W " @, + ay

Note w,. > w;. Please use the above Fourier transforms for x(t) and y(t) throughout this problem.

We can extend this idea to add a second
stage of sinusoidal amplitude modulation
(in the dashed box) to increase the carrier
frequency w, to an even higher carrier
frequency as shown on the right: cos(wct) cos(wpt)

To achieve the frequency R(jw)
content of r(t) shown on o 2w, <« 2w,
the right, complete the following: A

X(t) y(t) Q(t) Bandpass i I‘(t)
Filter h(t)

(a) Draw the frequency —16mc 10w,
response of q(t). 4 points ,
’ i 0(jw)

. [ 2&) > [+ 20) ’{ }4— 21— “«— 204+
(b) What is the value of wy, - - % . -
in terms of the other

parameters in the system? |

4 points.
0w, €E{%0, 11w, “ 9w, — 11w}

—wp —w, —wp+ o, Wy — We wp + W,

H(jw)

(c) Draw the frequency response < 2w 2w ¥
of the bandpass filter H(j w). 1
4 points.

|
(d) What is the value of A? 1 —10w, 10w,

. A==
4 points. 2

This approach, which uses two stages for sinusoidal amplitude modulation, is called heterodyning.
For example, the first stage could be in analog circuits and the second stage in RF circuits. The
first stage, once implemented, can be reused in many designs.



Problem 6. Discrete-Time Mystery Systems. /8 points.

a
o
o

4

N
o
o

w
o
o

N
o

Frequency (Hz)
o

-
o
o

Ll =x[2n] 1, {x[n]} = {

o

Original signal

-15

N
o
Power/frequency (dB/Hz)

1 2

Time (s)

3

4

-25

Consider a discrete-time chirp signal x[n] obtained by
sampling a chirp signal that sweeps from 0 to 500 Hz.

x(t) = cos(2mfit + 2mut?)

Where f; =0, f, =500Hz, u= f2—fi _ 500Hz

and f; =

1000 Hz

)

2tmax 10s

Assuming x[n] is the input (original signal shown),
indicate which of the systems (1-8) would produce each
output (a), (b) and (c). Justify your answer.

Here, |, means downsampling by a factor of two and T, means upsampling by a factor of two.

0

x[mll,

n N even
2

n odd

= (% + %cos(nn)) x[m] |m=%

Hint: Draw the spectrograms corresponding to 4, {x[n]} and T, {x[n]}.

500

(a)

-15

(b)

400 5400 \\\

3300 >< =

g 20 o -20

3 200 $ 200

£ 100 LF_L’

0 -25 0 -
tE ot 1.2 3 4
Time (s) Time (8)

(1) | x[n]—{ T, |~ Lowpass — L, |—=y1[n]
) x[n]—- T, | Highpass — |, |=y2[n]
3) x[n]- T, [~ Bandpass [ |, |=y3[n]
4) x[n]— T2 —| Bandstop ‘LZ — Vu[n]
(5) x[n]_’ lz —> LOWpHSS — TZ — Vs [n]
6) | x[n]— l, (| Highpass [ T, |=ys[n]
(7) x[n] - ‘|’2 —> Bandpass —> TZ — V7 [n]
(8) x[n]— l, — Bandstop — T, =g [n]

Power/frequency (dB/Hz)

(c)

Frequency (Hz)
~
o
o
N}
o
Power/frequency (dB/Hz)

0 -25

(a) Exact match to system (6).
Partial match to system (8).

(b) Exact match to system (5).
Partial match to system (7).

(c) Exact match to system (3)
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%% MATLAB code to generate spectrograms for problem 6

%% by Mr. Dan Jacobellis, UT Austin
blockSize = 256; overlap = 255;

fs = 1000; Ts = 1 / fs;

tmax = 5; t =0 Ts tmax;

%% Input chirp signal

f1 = 0; f2 = fs/2;

mu = (£2 - f1) / (2*tmax);

X = Ccos (2*pi*fl*t + 2*pi*mu*(t.”2));

figure; spectrogram(x, blockSize, overlap,
colormap gray; colormap(flipud(colormap)):;
title('Original signal')

blockSize,

%% apply systems

N = 600; win = gausswin(N+1, 2.5);

lowpass coeff = firhalfband(N, win, 'low');

highpass coeff = firhalfband(N, win, 'high');
bandpass coeff = firl(N, [1/4,3/4], win, 'bandpass');
bandstop coeff = firl(N, [1/4,3/4], win, 'stop');

up2 = @(x) upsample(x,2);

down2 = @(x) downsample(x,2);

lowpass = @(x) conv(x,lowpass coeff, 'same');

highpass = @ (x) conv(x,highpass coeff, 'same');
bandpass = @ (x) conv(x,bandpass coeff, 'same');
bandstop = @(x) conv(x,bandstop coeff, 'same');

sl = down2 (lowpass (up2(x)));

figure; spectrogram(sl, blockSize, overlap, blockSize,

colormap gray; colormap(flipud(colormap)):;
s2 = down2 (highpass (up2(x)));

figure; spectrogram(s2, blockSize, overlap,
colormap gray; colormap(flipud(colormap)):;
s3 = down2 (bandpass (up2(x))) ;

figure; spectrogram(s3, blockSize, overlap,
colormap gray; colormap(flipud(colormap)):;
s4 = down2 (bandstop (up2(x))) ;

figure; spectrogram(s4, blockSize, overlap,
colormap gray; colormap(flipud(colormap));
s5 = up2(lowpass (down2 (x))) ;

figure; spectrogram(s5, blockSize, overlap,
colormap gray; colormap(flipud(colormap));
s6 = up2 (highpass (down2(x))) ;

figure; spectrogram(sé6, blockSize, overlap,
colormap gray; colormap(flipud(colormap));
s7 = up2 (bandpass (down2 (x))) ;

figure; spectrogram(s7, blockSize, overlap,
colormap gray; colormap(flipud(colormap));
s8 = up2 (bandstop (down2(x)));

figure; spectrogram(s8, blockSize, overlap,
colormap gray; colormap(flipud(colormap)):;

blockSize,

blockSize,

blockSize,

blockSize,

blockSize,

blockSize,

blockSize,

fs,

clim([-25,-15])

fs,
clim([-25,-1571);

fs,
clim([-25,-151);

fs,
clim([-25,-15]1);

fs,
clim([-25,-1571);

fs,
clim([-25,-151);

fs,
clim([-25,-151);

fs,
clim([-25,-151);

fs,
clim([-25,-151);

'yvaxis');

'yvaxis');
title(' (system

'vaxis');
title (' (system

'vaxis');
title(' (system

'yvaxis');
title (' (system

'vaxis');
title (' (system

'vaxis');
title (' (system

'yvaxis');
title(' (system

'yvaxis');
title(' (system



